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CELESTIAL MECHANICSAND ASTRODYNAMICS

A TRAJECTORY OPTIMIZATION TECHNIQUEBASED UPON THE THEORY OF THE SECOND VARZATION

Henry J. Kelle 7

Analytical Mechanics Associates, Inc., Uniondale, N.Y.

-_ and
Richard E. Kopp' and H. Gardnc_ Moyer _

Grmmnan Aircraft Engineering Corporation, Bethpage, N.Y.

Abstract _(_ /__

A successive approximation method based upon the theory of the isecond variation is developed. In the early stage of cumputatlon, /the process behaves much like the grddient/penalty function pro-

: cess with boundary conditions met only approximately. In the
termlne_l stages convergence more rapid than that of a gradient
method is achieved with "exact" satisfaction of boundary condi--
tions an integral part of the process. Since the equations of

'] variation cf the Euler-Lagrange equations are employed in theuomputatlonal scheme, only slight additional effort is required
to perform a check of the ger_ralized Jacobi (Mayer) condition.

Introduction _--=_--

Research in methods for nmnerically determining optimal trajec-

torles has takens in the main, two directions: study of steep
descent processes in varlous versions, 1-8 and development of

itera_ive solution schemes for the Euler-Lagrange equations. 9--19

The strong points of steep descent processes are that conver-gence does not depend upon availability of a good initial esti-
mate of the optimal trajectory as a starting point, and that they
seek out we_k relatlvs minima as distinct from points at which

B the functional is merely stationary. The main weakness in prac-tical applications is that convergence slows in the terminal
phase of the process as the optimal trajectory is approached. As
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CELESTIAL MECHANICSAND ASTRODYNAMICS

_ with other methods, there is difficulty if either the Legendre-
Clebsch condition or the generalized Jacobi condition i_ met only
_arginally, i.e., if the so]utlon er_ibits either singular sub-

arcs or conjugate endpoints_ and this in cbe form of con-
appears

vergence so poor that, practically speaking, the method fails.
Except in these cases, an a posteriori check of the Weierstrass

condition will establish the weak relative minimum obtained bythe process as a strong relative minimum if the strengthened form
of the condition is met.

Iterative solution of the Euler equatioDs requires a good first Jestimate of mu!tipller initial conditions in order to converge at
all. Convergence of the process is assured, theoretically, if _
the trial initial conditions are sufficiently close and if the

solution is non_ingular with nonconjuga_e endpoints. The estab-
llshment of mlnimali_y requires separate checks of the Welerstrass _
and generalized Jacobi conditions. The latter is somewhat complex _

computatlonally and has been only rarely performed in practice.Convergence as a practical matter is troublesome, particularly _
so in the case of atmospheric flight of lifting vehicles. 9 Some
success has been realized in the initial value iteration approach

i_ in the computation of optimal rocket trajectories in vacuum. II-13Even in this class of comparatively well-behaved Euler solutions,
the main practical difficulty is in obtaining a trial solution

whose end conditions approximate those desired. An attractive _.

iJ feature of the method is fast convergence in the terminal phase
of the computation. A refinement of the method is the use of a _
linearized version of the Euler equations to obta$_ the elements
of the transition matrix needed in the iteration. _,15 In the

work of Ref. 15, a separate computation via gradient method was
employed to obtain the first estimate of the multlplier initial
values. A different sort of iteration qcheme tailored to "baDg-

bang" control problems is reported in Ref. 16. A method based _.-upon the Euler-Lagrange equations and a generalization of Newton's __
method h_s been investigated in Refs. 17, 18, and 19, but has : _

received little attention in trajectory applications. The rela-

". tIJnshlp of this method to that which we discuss herein will be _
U examined in the latter portion of the paper. _%

U In the present paper, we present a successive approximation I_
cechnlque based upon the theory of the second variation. As with
gradient methods, the initial trajectory estimate is required to
be neither optimal nor necessarily a good approximation. In the m,

I initial phase of computation, the penalty function treatment of
r

terminal conditions is employed and the behavior of the process -'_
strongly resembles that of a gradient�penalty function process as
a result of step size constraints being operative whlch limit the

I amount of improvement sought during each cycle. These constraintsare progressively relaxed, finally dropped, and the terminal l_
penalty scheme discarded in favor of "exact" terminal conditions

i that are ultimately satisfied if a solution exists, in the sensethat the specified conditions are attainable. This second phase
of the process is computatlonally similar to iteration on the

!
,|
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Euler equations and shares the feature of fast terminal conver-

gence.

Problem Formulation and Penalty Function Approximation

We begin with a statement of tile trajectory optimization prob-

lem in the usual Mayer format. Given a system of flrst-orderdifferential equations

xi = gi(xl ' "''' Xn'Yl' "'" y_,t) (I)
it is required to fiud a solution of this system satisfying cer-
tain specified initial and terminal conditions and providing a

: minimum of some function P = P(Xlf , of the ter-Xnf,tf)

minal values of the varlables xi and the terminal time. The

! variables xl, i = I, .o., n, are state variables and _heYk, k = 1, ..., _, control variables. The latter may be subject
to inequality constraints of the form

Ykl --<Yk-< Yk2 k = I, ..., _ (2)

as subsidiary conditions of the problem. We will deal primarily

with the relatively simple case in which such inequality con-straints are absent, adding some cccx_ents in the latter portion
of the paper on the treatment of ine(_allties.

! For simplicity of presentation, we will assume that all of the
initial values of the xi are fixed at a specified initial time

to:

8 n,s

xi(t o) = Xio i = I, ..., n (3)

The terminal time tf will be regarded as unspecified, which is
more often the case than not in appllcatlons. The termlnal

values of the first m of the xi will be taken as fixed:

U
xi(t f) - xif i = i, ..,, m (4)

a_xd those of the re_ainir_ ones unspecified. Some or all of the

termlnal values of the x_, i - m + I, ..., n may appear as argu-
r:ents of the function P-whose

minstrel, is sought. 11_e partlcu-
_ar form of boundary cqndltlons chosen here for definiteness is
reasonably typical of problems arising in applications, and, in
any ease, modlficatlm_ of the ensuing ar_alyRis to accoe_odate

I other types of boundary conditions will present _o essentialdlfflculty.

I-
|
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I An alternate formulation of the problem is given in te_s of an
approximation employing an augmented function of the terminal
values:

I P' . P(x ...,Xnf,tf) +(xlf* "''Xnf'tf) = + If'

I m (5)
2

½ _ Kj(xjf xjf)

I j=l
i

A minimum of the function P' is to be sought without specifica-

I tion on the terminal values of the xi. With Kj > 0, j = I,..._ m, the second member of (5), which may be termed a [_&

"penalty function," will be positive if there are deviations from

i the desired terminal values _jf. If the 9 are chosen to benumerically large, it may be antlcipat i that a trajectory, opti-
mal in the sense of minimizing P', will come close to meeting _
the desired terminal conditions, provided, of course, that these _

I are attainable. One advantage of a pe_mlty function treatment ofterminal conditions is that a solution of the problem may be cem-
vuted even though the desired terminal conditions are unattain_

I able, i.e., even if no solution exists for the correspondingproblem stated in terms of fixed terr_inal conditions. In such _.
cases, the resulting solution, which _ils to closely approx._mate
the desired terminal conditions, may ; of considerable value to

I the analyst in establishing physicall7 reasonable terminal speci-fications for families of solutions, information which is avail-
able a priori only rarely. The basis, genesis, and application

I An Expansion about a Reference Trajectory

i In the classical theory of the Mayer problem, the constraints
given by the diffez_n%la[ equations (I) are adjoined to the func-
tional P' by means of bagrange multipliers:

I t
tf :

I J ffi P'(Xlf .... _:_.f_,tf) + ! Xi(" xi + gi )dr (6) Yi'1

I ot0

I and an expansion of J is performed in the nelghborhood of areference trajectory _i(t), Yk(t):

I
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J = Jo + J1 + ½ J2 + "'" (7)

__p' (xlf, - -
Here, Jo ..., Xnf,_ f , since the integrand in (6)

xanishes along the reference trajectory, which is presumed to

satiJfy the system (I). Jl and J2 are, respectively, the

collections of first- and second-order terms i_ the variations5xi , Byk cf the state and control variables from those of the
reference trajectory; they are known as the first and second

variations. Since the analytical form of the second variationJ2 appearing in the classical literature corresponds t_ the case
of a reference trajectory that satisfies the Euler-Lagrange equa-
tions of the problem as well as the system (I), the fo!lowlng

_. derivation of the slightly more general form corresponding to areference trajectory that satisfies only (I) is needed.

i! An expansion of the function P' in the neighborhood of the
terminal point of tbe reference trajectory is given by

p' p'
= (Xlf,...,xf, tf) +

n

+ _P'

½ X Z h  if Jfill j=l f

n _2p,

I _xi'fbtf AxifStf +

R ½ _2P-------i'8 +_tf2 tf2 ...

I Since we desire t,!cimately to obtain an approximation from (8)valid to second order in control variations 5Yk(t), evidently
we must employ estimates of the state variable terminal incre-

ments Lxlf which are correct to second order in the control

I variations, at least in the first-order terms of (8). A first-order estimate of the variations in the state variables is given

by the solution of a linearIzed version of (1):

!
I
|
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_gi _gi

i j--I J k=l

i--l_ ..., n

5xi(to) = 0 (10)

il in which the partial derivatives of the functions gl are eval_:-ated along the reference trajectory. An alternate and equival___at

first-order estlma_te of 5x i at the terminal time of the refer-

ence trajectory tf is given by ":

j _f

_ [ _ _ni

']! 8xi(tf) = J I Y_k 5yk dt (]I)
t k=l

The function Hi = I A i) gJ is defined in terms of that

r j=l ,

I] solution %.(i) of the adjcint system
j

'I

_J" " Z _i_ J=1, ..., n (12)i=l i

which corresponds to the special boundary conditions
i

_] Aj (_f) i_
=l j:i (13) i_=o j_i

A second-order estimate of the increment in xi at t = _f _.is given by the integral

to k-I

tl
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7
where

n n __i _ [ Y,_x'_"'_ _p=l q-1 P q

n _ b2H£

p-i k=l

_ b2Ul

Z _._k-_ 5Yk 5Ysk=l s=l

The second member of the inte_rand of (14) utilizes the influence
functions of (12) and (13) to obtain an estimate of the effects

of the second-order terms in the gi that were omitted in (9).

i A corresponding estimate for the increment in xi at a variable

terminal time tf = _f + 5if is given by

m

l
J=l _- k-1 [

(16)'

I n _glf _ _ bg.

!
in which the abbreviation,s 6xlf e 6xi(tf)_ _'if- 61('tf)" "-"if

I Substituting (16) into (8), and dlseard_,ngterms of orde_higher_ than second, we then ob_aln the desired second-order
approxlmatton to _' :

!
!
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l

Jl To+ J" + ½J2 = F'(_lf'"',_f,_'f) +

n

I _P' n _glf
i=l j-I 3f

_glf n _glf --

k-1 "J-1

+ t_f_) 5tf2 + 5tf +

k=l n n (17) -
_2..,

½ _._' _f(5% - •0xlf + 5tf)i-1 j-_ gif

+-- 5tf) + i(sxjf gjr }
?

n

_2p, +-- 5if) 5tf + i

½ --%- 5if2 _.

2tf" i

[

Here, and 5if have been resarded as flrst-order quanti- !:.

ties and the dtfi_erence bet_ceen _If and sxifas of second order. }_:!,;.

J It is of interest to relate this expression to the classical
development in which the reference trajectory is an Euler solu-

,' _ tlon, for t:.le case of open terminal conditions on _l.,e state ,:arl-,J
[I ables and the termlnal t_me. The functions H and _ appearing

in the classical development are _

[! n i%-
' H - _P' ni (18) i:.e
I I

] 965026535-0 ]0
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II

m= Z _ _i (19)

and _e irJltlplie.-£_ctlons are eo_espdndlng linear combinatlons

_i : ; of the fundamenca! solutitms _(1) of the system (12) defined by

- _ = : the-unlt t_l conditions (13). -If inequal/t-y_constraincs on

=- the _b_tro_= ,_rlables= F_ are absent, the Eu!er-Lagrange equa-

.. tions for the control variabZes are_ - _-. =

. , and
---;"=-_:.-;:": =--" _ --_dc'e_aIG:tems:_ (I) which eonta_ 8yk(t), SYkf

_" _, = -£ _ Successive Approximation Pcocesa :

" " _b_:.-_ _ , V ,:: _We :cons_d_ the poss ility of _eterm_n_ng control _neremenCs

: .___:'}:-'i--f- -_ i:--5Yk(t) that minimize the second-order_approximation to P'-- - o,: g%ven-by (17)_: This var_a61onal problem is Of Bol_a form ow_nE : :
: -_to the appearance o£ the integral _ :_

-' ][1

" -_ :_ [ ,BH" - '_' " _))dt (21)

i'l. ; f c t_ _ " ....

- fib--theexpression (17). , As subsidiary eondltlons of the varLs-:.!-.C:,. ei0nal :i_oblem, We have the system of differential-equations (9)

-_-: -._ hdefines the 5Xi(_ ). If the reference traJ_tbrY satisfies
;-_ : ":-" :'- the'i_ed initial- eondlCi_ns,-which we shall assume CO be the

- thea_p_opriate initial conditions on the 5x t are
_'...."'"•:_.- - o 5xi_(to)cape' ._0. Terminal _conditions, on the 6x_- are U_Specif_ed;

., _" : - as is cbe. incremeu t _n c erminal_-tim,e.. CBtf, The qtmdrac_e/linear
-._._.!_,._:. -format_Qf tb_e _Iza ,:arlatlonal pr.ohlem:i_ eomputati'ovally-

,.._":=-" _ ..aI_ract!ve,_and this :pro_des a primary motivation for the
.c-'-" "a_proach to the Successive approximation process, presently under

"_=C_'iB"'_''-- :" -'= _eo_id_at':ton. :'_ "" _"
_V_'::'.;-" - - _ .-

_ _.:=.-":'-_: "-,.-::_ '=._-..L. AdJd!_: _'_ediffer.en_ai c_s_raintso(9).,_with Las_'ange m-ltl- -,
':-'_c_-":'_:-_-_'--, ._p_le_U :-8_--_ _-=I, _'.;,n,, we proceed ¢o write the Eulez-

:: ne___essaryeol_dltion, and the _ =,
:-'_. .-:.. ; ; _, ._i_,_v.ersa!ity..conditions for _he prbblem, The Euler-Lagrange

9 502 535-01



!

CELESTIAL MECHANICSAND ASTRODYNAMICS
/o

equations corresponding to the state variables are:

bg.

8Xi=" i 8_j _xi - b _ (22)
j=l l

P i=l, ..._n

The Welerstrass necessary condition takes the form

-] _e " "k

{ h(Sy I ,...,Sy_ ) > h(SYl,...,Syz) (23)

in which the 5yk , k = I.... , Z, are arbitrary. The function j-_!l h is given by i5

n n

__ bgi _gi " i

i=l j=I l 3 k=l f

(24)Z "

5Yk+m

j .
Owing to the linear/quadratlc form taken by h, the Weierstrass ,

necessary condition is equivalent to the Legendre-Ciebsch necess- _'_.

I] a_ry c°ndltion and the Euler equati°ns f°r the 5'k" Thls w°uld "
no+. be the case if considerations included inequality constraints _"

onthecontrolvariables. _:;_';

0 The transversallty conditions corresponding to open 5xjf are !_

_P' °gll 82P'bx (Sxi _
ill iffil

t-] (25) _°'_

h} _)2p, 5if " 5),if 0 j 1, , n __."
_ _ eee

f-I '
{l

_J . and to open 5tf !

[1 ,.
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"j_JL Jf k'l °Ykf

(26)

_" 02P_ -- +- 5tf) +

: i'l j=l f 3f

n

(_ _tf) +_tf = 0
: i_=l--if-'f xl/ _[f_2P'

The a_lysis of our su_eesslve ipproxlmation process bears a

_j- resemblance to that of the classical accessory minimum problem{ : for the second variation. In the classical"_analysls_ the refer-
once trajectory satisfies the Euier-Lagrange equations and the

i_ tTansversallty conditions for the problem of minimizing P'; the
requir_nt of positive semldef__niteness for the Second varia-

: : tiun _ests the _roblem of minimizing the second:varlation,
the so-called accessory m/nlmum problem. The analysis leads to

• the Legendre-Clebsch and generalized 3acobi (Mayer) necessary

conditions. A main feature of the in the of
a_alysis, absence

- - £nequalltf constraints on the control variables, is that the
Euler-Lagra_e eqtmtlons and transversallty conditions of the

accessory proble_ arepreclsely lineariued versions of those forthe orIglnal problem of mlnimlzi_g P'. Such is also cbe case in

the present analysis, _rlth the slight buc important difference
_ that c_rtaln zero-order terms remain in the linearized :expres-

slons due to the nonoptlmal_ty of the reference trajectory. Asomewhat analo_0us apProach ' en_loylng an optlmal reference tra-
Jectory, has been taken in Ref. 20 in connection with an optimal

guida_e approximation scheme.In the present appllcati_on - the determination of an optimal
trajectory through successive improvements on a nonoptimal refer-

ence trajectory - there is a question concerning the existence ofa _ of (17) and a related question corcerning the conver-

gence of the process. If the reference trajectory were close to
the optimal trajectory sought, existence and converEence argu-

ments of sort_ could be built around this fact. Such a require-_nt on the reference trajectory Chosen as a starting point for
-the co_pu_tional process would, however, obvlonsiy represent an

-' undesirable restriction. On the other hand, if tbc referenc.e
traJectccy satisfi +s only the basic system (1) m_d the initial

f L

condltlon_. "_ut t_ otherwise arbitrary, there is-no assurance
that a minimum of (17) exists, and, in fact, it vilI comenly be

R the case that (17) is unbounded below. If, for exemple, thefunc_on h given by (24) has no minimum in the 8yk, the ques-

| "
:
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- tlon of existence of a minimum of the approximation Is serried in
the negative. Thus, at least iv the early phase of the compuDa-

tional process, it appears necessary to introduce restrictions o.. _
:_ the "step size" as measured in terms of the norms of the functions

J 5Yk(t ). Weotherefore alter the problem by the introduction ofaddltional _ubsldiary conditions given by the equations

5_n+ k = ½ 5Yk 2 5Xn+k(to) = 0 k = 1, ..., _ (27)

defining variables 5Xn+ k whose terminal values 5Xn+k(_f) are

integral square measures of the magnitudes of the control variable

 r,=nts .k(t). I i i
•J With the cons:taints (27) adjoined by means of additional multi- !

pliers 5_i, _ _ _+i, ..., n+_, the analysis proceeds as before,

and the Euler-La_range equations (22) and the transversality i_:
conditions (25) rmc' (26) are unchanged. The Euler-Lagrange equa-

tlons eorres=_o_ding to the variables 5Xn+k, k = I, ..., _ are !_._

{_ _ = o k = l, ..., _ (28) _ !,

i ] indicating _he constancy of these multipliers. The Weierstrass _!) necessary condition iS given by 1

h(_Yl* *_ ^_) , ..., 6y_ , _> h(SYl, ..., 5y_) (29) .i/:"

i] . ^ i-_
in which the By k are arbitrary, and the function h is given I_::
by v--

^ 8g i 5y k +

11 i-l J-l J 3 k-Z l,_"
(30) /

k-i k=l

[-] the last nember arising from the additional constraints (_'7). _

The We£erstrass necessary condition (29) provides information i

_ of value in the choice of the constraint multipliers 5hi, i -

i-I n+l, ...) n+_, this choice being equivalent to the establishment _'.,
of the step alze parameters 5xi(tf) , i - n+l) ..., n+l. In the _._<_,

- case of a_ unbounded control variabl_ Ys' for example, a re- :

fl
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-----+ 5X._ s > 0 (31)

2 2 - -

if _H/_ys2? take_ 3n neg_tlve values along the reference
and

tra._ectory, a 5An+ s > 0 at least la:ge enough iu magnitude to
satisfy (31) will be required to satisfy (29). More generally,

the 5Ai, i - n+l, .o., n+_, must be chosen at least^ large

__-_ enough in magnitude to insure that the function h possesses a
,d_bmaa.

If the multipliers 5hi, i - n+l, ..., n+_, are assigned

f'i large positive values, corresponding to a restriction to very
small step size, the successive approximation process described
by our analysis becomes a gradient process. In this case, the

_ process would ultimately approach a weak relative minimum of P',
provided that a m_,4-,-, exists, since its nature is not such as
to: seek out s_atlo_ary points of nomnlnlmal character, and the
generalized Jac_bl necessary condition would automatically be

satlsfled.
As a practical matter, it seems appropriate to choose values

for these multipliers somewhat larger than necessary to satisfy
_, the Welerstrass condition (29), but not so large as to adverselyaffect the speed of convergence of the process. A conservative,

but compu_atloually expensive procedure would be to perform the

generallzed 5acobl test for the problem of minimizing the approxi-mation (17)at each step of the process, t_husinsuring that the

step-slze multipliers have been chosen large enough to exclude

" generalized conjugate points from the interval t < _.< tf.

_ Am Ore practical procedure, having an element of _ gamoTe, wouldbe merely to check at each step whether or not a decrease ±_ P'
has been realized, and Co perform the generalized Jacobj. test

U only on the specimen finally obtained after _he process has con-verged. We will discuss the Jacobi test procedure subsequently.

A point neglected in the preceding analysis is t1_c determina-

i tlon of control increments at the terminal point of the reference
trajectory _Ykf = 5Yk(_f) which enter the expression (17) whose

minimum is sought and which appear consequently in the trans-

I versallty con_Ltlon_(26). If continuity were required of thecontrol variables yk_ and hence of the- 5yk, the control

increments at t = tf would be determined by the operationA

I mln h Just as at interior of the t---.
points interval t < t <

5y k O_ ..

=o The Introductlon of such a contlnui_y requirement at the termin-
al point is a feaslbl% if rather arbitrary, means of handllng

_ the matter. If, on the other hand, the 5Ykf are regarded as free

'i
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j of choice, it follows that they must be chosen so as to provide a

minimum of (17). Since the 5y_f__ appear linearly in (17) withcoefficients

n _pt _gif _Hf

it is posslble that no such minimum exlsts. This situation will

!-_ definitely arise in the ease of a control variable Ys' which is_!
not subject to an inequality constraint of the form (2) if

c

!j
_Sf ¢ 0 and 6tf ¢ 0.

I[] Such considerations suggest the possibility that the control
variables chosen for the reference trajectory should not be com-
pletely arbitrary but rathe.- should be taken such as to minimize

_- _x i gi

in the _cinity of the terminal point. The course of action

[] adopted is probably not of key importance computationally, since i
!. the effect is local, and

n
I

Computational Procedure for the P0_slty Function Process Ii!_
A possible sequence of calculations is the following: _,.

H 1) Integrate munerically the system (1) employing the giveninitial conditions and stored first estimates of the control

variables yk(t).
h

|| 2) Terminate the t_aJectory at a dme _= determined so that
|J

P' regarded as a function of tf alone th_ trajectory attains a "_'minimum, and hence that

d p'_-_f = 0. This technique has previ-

_ously been employed in the gradlent/penalt) function process. 1'2

n
II

1965026535-016



CELESTIAL _/,ECHANICSAND ASTRODYNAMICS

_ 3) Integrate the adjoint system (12) backwards in time employ-
/C

I_ ing terminal values _i(_f) ffi_ . Store the initial values

ill if
.

, _i(Co). Calculate the coefficients appearing in the function h

I (24) this and select the i =F:, during integration, 5_i, n+l, $ • @ _

i i{ n+_.
4) Generate by numerical integration a matrix solution of the

!_ combined system (9) and (22) with 5yk determined by the opera-
i ^

tlon mln h_ i.e., perform n integrations concurrently with

_? 5Yk

L! unit matrix initial values of the 5_i, i = I, ..., n, and all

6xi initial values zero. Regenerate the reference trajectory

_i {_! and the a.Jolnt solution concurrently for the purpose of ealcu-

lati_ the coefficients of the combined system.

5) By linear algebraic operations, determine the Inltlal

!I li values of th.• 5_i, i - i, ..._ n, and the value of 5tf that
l_J

satisfy the transversality conditions (25) and (26).

_] 6) Employ the 5_i _.nitial values so determined for another
integration of the combined system (9) and (22). Add the 5yk

generated in this solution to the stored _k" This furnishes

_{ the control functions for a new reference solution.

7) Repeat step i, starting a new cycle. Compare the value of

P' obtained in step 2 of the new cycle with the previous value
of P'. The process repeats untll decrements in P' become
s_a11.

Refinement Proces._
On account of the penalty function approximation, the process _'

described will converge to a solution whose terminal state vari-

able values differ from those prescribed. For large positive _ _ _ _,

values of the penalty constants Kj, the differences will be :_ -_

small unless the prescribed terminal values are unattainable. __

The penalty function _ormulatlon of the problem s,,rves its put- _i\pose in permitting a dcrerminatlon of whethez" Or not this is the
case and by providing a scalar measure of convergence - the
decrement in P'.

a_

! In examining the refinement process described in the following,
we assume that the penalty function process has converged closely

I enough to a mininun that the step size constraints (27) are no
longer necessary and that the adJoint variables approximate the
multipliez functions of the fixed endpoint problem.

!
!
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We adopt an expansion for the function P similar to that
given by (8) for the function P':

n

_--,'c_,.,....,_f,,:,_+,._,.l_ _ +__'_°':f+
! n n

n _2p. _2p

i---_l j---_l i_n+l - (32)

½ _2...._p 5tf2 +
_tf2 "..

,! The fixed state variable terminal conditions will be

i_ - + -_if= o i -- 1, ..., m (33)xif axif

!I
: Here the _if are specified values, the xlf those of the ref-

, ! erence trajectory obtained via the penalty function version of

•t I the process, and the dxif are the second-order approxlmation8

to terminal value increments given by (16). The constraints (33)

1 may be adjoined to (32) by means of additional multipliers _i'

'1 i = I, ..., m, and an approximation sought to the augmented
expression which is valid to second order. Approximating the

{] _i to zero and first order terms as i
_i = _i + 5_i i = 1, ..., m (34) '

i pand taking Di for the first refinement cycle as the terminal iv

value of the adJolnt variable hi obtained in the penalty func- ;Syo_=_

!iI tion approxlmatiOn_p_

_i= _ i- I, ..., m (35)

we obtain the desired second-order approximation to P as

i-I n

: . . - +,I _o+_ • __ _c_ ..., % _#+ Z _ %+._
I_+1

{I
il
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/1

J el _gif _ _gif n _gif_

_gif • _glf 5tf21 _r n n _2pI X_",<_+_) _ _+_k=l f=._+l j :,m+l

I (6xlf glf . gjf+- _tf_,<_'Jf+- 6if.>+

[ °
_2p -- 8if) 5tf + ½ _2p

I i.,,.+1
(36)

m n Bglf _ _gif .

i-I j=I k=l

n _gif _, _gi£ _gi. -- _ _ l -I-

i .1-1 k-1

I In thla second-order approximation, 5xlf and 5if have been

regarded as of first order and the difference between _If and

I 5.1f as of second order.

J The transversallty conditions eorresp_ndi_ to 5xjf are

n _glf m _gif

i-m+l f i-1 _ + 51j - -

I j- 1, ..., m(a7)

I .

g
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! n m

Z _p Ogif _gif

I _ °x_°_ �_._X_ ox.__ +

n _2p + 5if) +

I Z _'xlf_x_ f (Sxlf glfi=m+l

(38)
_2p . - 0 _'i - m+l, ..., n

f

R 3_f tf 5tf 5_J '

to 5 tf _"

n n _gif _ _glf n _gi

i--m+l j=I

bg . bgi. n

a2P " + -- 5tf) + _2p + !I_ _ (°xif 2gif _f2 5tf

i-I J-1

_glf n _glf _ bglf -- _glf

k-1 J-1 k-1
m

! 5_i = 0
i=I gif

and to 5_

I - - o .1 = 1, ..., ,- (40)

I
I

1965026535-020



!

I CELESTIAL MECHANICS AND ASTRODYN_MICS
J?

J Examination of these relationships establishes that they arellnearlzed versions of the transversality conditions for the

original problem. In the case of (39) it is convenient, computa-

I tionally, to eliminate the _j employing (37), and introduce
the BAjf from (38) where appropriate. Since the 8_j do not

i appear elsewhere, (37) can then be dropped.Computational Procedure for the Refinement Process

i The procedure for refinement process calculations is generally
quite similar to that sketched earlier for the penalty function

process, with the follo_in_exceptions. Trajectory termination

time tf is taken to be tf + Dtf of the preceding cycle. The

I adjolnt system soluti_on is integrated numerically forward in time,
with initial values Ai + 6A i , i = i, ..., n, of the preceding

o o

cycle. Terminal conditions of the equations of variation are

I (37-40).

Generalized Jacobi Test

J The generalized Jacobl test may be applied to the soluticn ob-
tained after convergence of the process with only slight add_.-

tional computational effort, since it requires the equations of

I variation of the Euler-Lagrange equations and the same trans-versallty conditiens emuloyed in the successive approximation pro-
cess. The version of the test dealt with here is applicable only

to normal nonslnKular extremals. It should be mentioned that a

I similar restriction applies to the successive approximation pro-
cess itself. The process fails in the case of a singular subarc

appearing in the solution due to the indeterminacy of _he Weler-

I strass condition, and it requires modification in the case of
abnozmaliry phenomena.

The generalized Jacobl test matrix is the matrlxwhose inverse

I is required in the computation of the 8A i , i - I, ..._ n_ ando

5t_ satisfying, through the equations of variation of the Euler-
La_range equations (22) and the equations of variation of the

I basle system (9), the te-_vlnal condition_ (37-40). Values of theindependent variable t* > t at which the matrlx becomes slngu-
U

!=i determln¢ generalized conjugate points. The generaJized

i Jacohl necessary condition is the r_qulrement that there exist no
such points In zhe interior of the _nterval to < c < t_.

For oomputatlon-! test purposes, a _ucces_£on of times oolncld.

I lug with values employed in numerical integration are _ezarded ,each in turn, as terminal points, the elements of the test matrlx

evaluated Jtst as in the succe3slve approximation process, Bud

the determinant computed,

I The vanlshln_ cf the determinant alon E the trajectory

I -
I
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! -indicates the existence of a nontrlvial solution of the combined

equations of variation that satisfies the linearized verslcn of

the terminal conditions. According to the usual argument, tbe

I nontrivial solution exhibits a corner at the point t*, at whichpoint the Weierstrass-Erdmann corner c_ndltions are not met_ and
hence the zero value of the second variation given by the non-
trivial solution cannot be the mlnimumvslue. The possibility of °

I a negative second variation if to < t* < tf disqualifies the ..test extremal as a candidate for a minimizing arc. The general-

ized Jacobi condition, called the condition of Mayer i,,the ,o

I 3tronger form approprlate to sufficiency proofs, is treated inRefs. 21 and 22.

Treatment of Inequality Constraints on Control

I Variables

If inequality constraints of the form (2) are operative, an
analysis _milar to that preceding may be carried out._ The diff- %

erence is that the minimum operation on the function h given by ,}
(36) is subject to inequality constraints o, the 5yk derived

directly from (2) and the control functions _k(t) of the refer- _

I ence trajectory. In this case, the solution of the two-polntboundary problem for the nd.nlmumof the approximation (17) or (36)
cannot be carried out by linear operations, and an important

I advantage is lost.In flight perfoz_ance applications, an inequality cons_-aint on
a control variacle is usually associated with the appeaz_.,ue of

I the control variable in the basi_ system (I) linearly. If theoptima_ control is bang-bang, it will usually be advantageous to
deal with switching times as control parameters, in which case
linear me=hods may then be employed for trea._nent of the two-

I point uoundary problem arising _, the successive approximationprocess. If noL, the occurrence of a singular subarc in the solu_
tlon is implied and existing numerical schemes fail.

I Relations;hip tJ Other Computational Techmiques

The present scheme has s_,ilarities to two existing techniques

I based upon the Euler-Lagrange equations. The firgt of these is _
the generalization of Newton's method studied in Refs. 17-19 but

ne-er applied numerically to trajectory problems, to the writers'
knowledge. The mala difference is in the penalty function

I approximation and in the use of the step-size constraints employ- i_ed in the present method to insure the satisfactlor_ of the

Legendre-Clebsch necessary condition, lu should be noted that
the straightforward use of Newton's method may yield a process in L

I which the function h of (24) is maxlmi_ed rather than minimizedover certain intervals, and that the trajectory obtained by the
col_erged proces_ may consequently fail to sitisfy the Legendre-

Clebseh c_ndit_on, and hence not furnish a minimum.
The rafinement process presently described would be similar to

!
!
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= the methods of Refs. 14 and 15 if each new reference trajectory
were obtained via the Euler-Lagrange equations, with the solu£ion

of the two-polnt boundary value problem employed only for compu-

I ration/of new multiplier initial values. The limitation of sucha technique is that a good first estimate of multiplier initial
values is required fo: cc_vergenee, in the present ,-_thod3 the

equSvalent of this is Obtained via the penalty function version

I f the process which produces the first approximation for therefinement process.

E - _ = _Low Thrust Example :
= To illustrate this secondlorder computation.m1 technique and
compare it with the flrst-order grad_en_ me.chod_ a constant low- : :

-"h_ii._: :.r/trus_ tran_f_-_be_een coplanar clrcular' orbits has been calcu-: " "- _,- " - lated. "Thls p_ctiCular pr_oblem; _ Earth to Mars transfer, _ms -
:'-'--_:_ -_:_-'.:_"-'..'t£eated._. _the-_resent auth,-orsIn Re£. :2_.usingfirst-order steep.
'£_,_i=_:_.'_--..-" .:de_ent theories-. Th_:.sysCem 0f e_ua_ions governing the motion

!I] .... :_:::-. :_= .... +:.... i: It 2 ' T sic o
+ R-v -.("--/_-_ + T/Ve t (41)

,= -.- _.=_i= -%
2.

, .- _>- erent acion _- :

' 82 _cos 8-::-.--._.. . ¢_= = uv _+. : (42) _,

- _ - _ m - TIV t -
/ _..-::_. -. o e_ _

"_: &di
_:_..*_.:: " ._ -_ aI Veloci_/

-. =g3=u.

_,_.; .- _ - . - - 0; _ ; _" _AI_ the initial-and final v_iues of the state variables were

i . ;.-" .': _ - -.., _- .. ,_ - _ . : "J

,_- -:: _ - ' P - tf (44)
: - _ _._ ,,.-" - --

-_= :-_'_neS_ec_nd_order dePcent-process was coded" for: the T_ 7094 _- -: -"" " ; - ,'-"_puter. A_modlfied Adams numerical integration-s_cheme was
- _.:f ......

4 . ,:r . . _- " _S_" "r -The-integratlon,ste p was fixed at two da_ys, dividing mos£

!_#_ --...' Of thetraj¢ctpries _nto approximatel 9 one hundred, intervals.: -_-... --'i_--_.: __:.,-:-_'_'i:._e_=p f_,_t _ "-:_. z - ose of .co'dinS .the £1rSt-.s_age penalty ion pro-

- '-_ /o.f t_e_rlc_l calculation was greatly reduced by setting 5t

. _ _"_ _'? "-:" to_zero, _Thus_(t7) simplified Co _
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n n

I _2p,
i=-i j=_l if ]f Jf

i The control variable increment 50(t) was th_en calculated to ob-tain the maximum reduction in P' at time tf. Of course when
the trajectory with cont=ol variable e + 5e was computed, it

I was not terminated at time tf but rather at the point of thetrajectory with minimum P'. With respect to over-all computa-
tional time, this technique represents a compromise between a true

' second variatioa calculation and additional prograulning complexity. ; ;

For this particular problem, it was advantageous to treat the :
I problem as a fixed time problem when computing BO 'using penalty T

functions.

I The initial O(t) function corresponded to constant circumfer-ential thrust. This resulted in t=rminal boundary value errors

that averaged 20Z_ After 6 descent cycles, using the penalty

I " function procedure, the terminal errorsaveraged 3% with the _ :transfer time at 180 days. After 5 additional cycles of the re-
: fine_zent process, the average boundary value error was reduced to

0.05% and the transfer time had reached its minimum of 193 days.

I The over-all computer time was two rain., thus representing half : --the computer time required by the first-order gradient program. :

Conclusions

: The second variation trajectory optimization method described in
this paper is appreciably more complicated than the first-order

gradient theory. It appears, however, to be economical in thesense of computlng time when many optimal trajectories are to be

, computed. In addition, the generalized Jacobi test may be applied :
with only slight additional computational effort. As with any

I computational approach to the solution of optlmal trajectories," : the effectiveness of the method rests with its judicious appllca-
tion.
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